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1. Introduction

A D-brane is a hyperplane where the end points of an open string can be attached [1].

When two or more open strings come across they will scatter each other. Studying the

scattering will be interesting and relevant for several reasons.1 For example, knowledge on

scattering may shed some light on the better understanding of AdS/CFT and its derivation,

which has been our main motivation. The derivation in turn may provide a new paradigm

for the unification of gauge theory and gravity. When a phenomenologically more realistic

model of a D-brane configuration becomes available it may also be necessary to consider

scattering of states not only at the low energy field theory level (which may or may not be

renormalizable) but also at the full level of open string.

For the actual study one must first construct the vertex operators for the external

scattering states. This has been carried out in the GS formulation in one of our previous

works taking the D3 brane case as an example [3]. On a D3 brane the D9-brane multiplet

gets resolved into two multiplets which we call the scalar multiplet and the vector multi-

plet in analogy with the N=2 susy field theory. Subsequently various tree and one-loop

1In the past scattering on D-branes was studied in the NSR formulation by several authors [2]. We will

use the Green-Schwarz (GS) formulation which is almost inevitable for the things that we try to do.
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amplitudes were computed [4]. One loop divergence structure was obtained. It was noted

that the divergence structure does not share the nice feature of the D9 brane, which seems

to suggest that it may require a more radical measure to remove. The deviation from the

D9 brane is due to the different structure of the zero modes. A proposal for cancelation

of the divergence was put forward in [4]: it should be possible to absorb the divergence by

adding “counter vertex operators” of composite nature. They are to be constructed out of

the open string fields.

It was conjectured that the precise forms of the vertex operators will have a link to

the geometry induced by the D-branes.2 According to the conjecture the geometry should

provide a guidance to find the counter vertex operators. It would be a hard task to construct

them without such aid. Once fixing the form of the counter vertex operator the geometry

should be taken as an out-come: it arises as a result of the flat space analysis. It is a

secondary by-product of open string loop effects, hence the title of the paper. Nowhere

in the construction the explicit closed string degrees of freedom are used. The composite

vertex operators might be interpreted as representing a closed string state but that is,

together with the by-product geometry, as close as it gets to the close string. The whole

construction so far is based on the purely open string frame work.

Some preliminary computation was presented in [4] on the amplitudes with the counter

vertex operators inserted. In this work we initiate a much more systematic verification

of the conjecture focusing on two cases, the four scalar amplitude and the four vector

amplitude. The amplitudes at tree and one loop have been obtained previously without

the insertion of the couner vertex operators: here we compute at tree level

〈VsVsVsVs VG〉 and 〈VgVgVgVg VG〉 (1.1)

where Vs (Vg) denotes the scalar vertex operator (the vector vertex operator) and VG the

counter vertex operator. The subscript “G” represents its proposed origin, the geometry.

We interchangeably call the counter vertex operator the geometry vertex operator.

The detailed construction of VG is presented in the appendix. The basic idea is to start

from the GS action in a generic curved background. The action was constructed relatively

recently in [8 – 10]. In place of each supergravity field one substitutes the supergravity

solution for the D3 brane geometry. For a perturbative analysis one makes an expansion

which we call large r0-expansion wherein one introduces coordinates, Xm = Xm
0 , r2

0 =
∑

m Xm
0 Xm

0 , for a location that is far away from the center branes. Then one makes an

expansion of the resulting non-linear sigma model action around that point. Then one

identifies the fields in the external scattering states as the fluctuation fields in the shifted

coordinates. Why are such an expansion and identification necessary? From a practical

viewpoint the large-r0 expansion seems inevitable for the perturbative computation. Put

differently the connection between the geometry and the loop effects are made where it can

be made in the brane geometry. Obviously it is not the near-horizon region that we look

2A direct connection between the quantum effects and geometry is not entirely new. For example the

map obtained in [5] can be interpreted in this context. The link between divergence and geometry goes

back to the Fischler-Susskind mechanism [6, 7]. We comment on the relation in the conclusion.
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into. None the less one can make a connection to AdS geometry and AdS/CFT once one es-

tablishes the role of D-brane geometry. We will have more remarks on this in the conclusion.

As stated above our intention is to exclusively use the open string degrees of freedom.

For one thing it would be more economical, at least from the standpoint of unifying degrees

of freedom, than using the closed string degrees of freedom as well. However, as for the

geometry one may question whether it really is necessary. In other words, wouldn’t it be

possible to cancel the divergence using a flat space action since that would be much simpler

if things can work that way? The fact that the D9 brane way of canceling the divergence

(i.e., by shifting the string tension [11]) does not work for the D3 brane case can be seen

as follows. As in the D9 case the D3 brane one-loop produces divergence with exactly the

same tree level kinematic- and gauge- structure. Let’s attempt to cancel the divergence by

shifting the tension of the flat space action. If one considers the flat space action there is no

distinction between the D3 and D9 (since only the bd conditions are different): the action is

S = −1

2

∫
(

T∂αXi∂αXi − i

π
S̄aρα∂αSa

)

(1.2)

The counter vertex operator that results as a consequence of varying the string tension

is ∂τX
i∂τXi − ∂σXi∂σXi = ∂τX

u∂τX
u − ∂σXm∂σXm where we have omitted irrelevant

factors. The missing terms have dropped due to the fact that the vertex operators are

considered at σ = 0. Recall that the one loop results are such that the scalar four point

and the vector four point amplitudes have the same signs. It implies that with the given

relative signs one can not cancel the divergence of the scalar loop and the vector loop at

the same time. It is to be contrasted with how things go in the D3-brane background.

There the additional sign comes about, as we will see, due to the curved metric factors,

H1/2 and H−1/2, making the geometry vertex operator − q
2∂τX

µ∂τXµ − q
2∂σXm∂σXm in

the leading order. It can be read off from the quadratic order action in fermion,

−1

2

√
h hij

(

∂iX
u∂jX

vηuv(H
−1/2 − 1) + ∂iX

m∂jX
nηmn(H1/2 − 1)

)

− i

p+
(
√

h hij − εij)∂iX
+(H−1/4 − 1)(S∂jS) (1.3)

With the flip of the sign the counter vertex operator has a potentially right form to work,

and it does work as we will see below. Note also that the curved space provides the needed

factor of the open string coupling constant, g, through q (defined in (2.3) below) automat-

ically. The sign contradiction alone is sufficient to rule out the flat space action. But there

are some other ominous features that makes the flat action unlikely. For example, since the

string tension T appears only in the bosonic part the fermionic coordinates will not play a

role what so ever in any arbitrary order. Although the fermionic term does not seem to play

a role either in the examples that we consider in this work,3 it simply can not be true in

general. Another unfavorable feature of the flat space counter vertex operator is associated

with the two loop structure. The final form of a two-loop four point amplitude will have a

single integration as far as the world-sheet locations of the vertex operators are concerned as

3Remember that we are considering a first few leading orders of particular cases.
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with the corresponding one-loop amplitude. In attempt to cancel the divergence one would

have to insert two vertex operators of the form ∼ g4∂X(y1)∂X(y1)∂X(y2)∂X(y2). There-

fore even after performing one of the two y-integration there is one too many integration

compared with the two-loop result: it seems unlikely that the flat space operator will suc-

ceed. On the contrary the geometry after the large-r0 expansion naturally produces a term

at q2 ∼ g4-order at a single y-location. Therefore, it seems that the flat space option is ruled

out. The real question is whether the D-brane geometry does the job and, if not, what else.

The rest of the paper is organized as follows. In sec 2, we make a summary of results

and present some of the salient features of the computations detailed in sec 3. We point out

that the results are verification, at leading orders, of the conjecture that was put forward

in [4]. In section 3, we begin by putting together several ingredients for the forthcoming

computations through a brief review. We quote the full expression (i.e., expression prior

to the large r0 expansion) of the geometry vertex operator that is obtained in the ap-

pendix. After the large-r0 expansion we carry out the four point amplitude computation

for the scalar multiplet and the vector multiplet for the first two orders of the expansion.

Partial results are mentioned on the third leading order. Many parts of the computa-

tions are prohibitively long for manual computation. Much of the computation has been

Mathematica-coded. In the conclusion we discuss various issues such as the implications of

our results for AdS/CFT (especially the stronger form thereof), some of the loose points

raised in the main body, future directions. In the appendix we outline how to obtain the

geometry vertex operator.

2. Summary of results

The section that follows the present one contains lengthy and tedious pieces of computa-

tions. It may be a good idea to have a summary of the results before we embark on heavy

computation. To prove the conjecture, first we must show that the correlator 〈V V V V VG〉
has precisely the same kinematic and momentum structure as the corresponding one loop

(and tree since there are the same) result of 〈V V V V 〉. The computation below seems to

suggest a pattern on how this is achieved: a first few leading order terms in VG alone

produce the desired structure with the higher order terms yielding vanishing contributions.

The result of the appendix, (A.10), suggests the following form of the counter vertex

operator with S being the fermionic coordinate,

πVG = −1

2

√
h hij

(

∂iX
u∂jX

vηuv(H
−1/2 − 1) + ∂iX

m∂jX
nηmn(H1/2 − 1)

)

+
1

2p+

{

− 2i(
√

h hij − εij)∂iX
+(H−1/4 − 1)(S∂jS)

+
i

4
(
√

hhij − εij)∂iX
+H−7/4 H ′

r
∂jX

uXm (SγumS)

− i

4
(
√

hhij − εij)∂iX
+H−5/4 H ′

r
∂jX

mXn (SγmnS)

}

+
1

4(p+)2

√
hhij∂iX

+∂jX
+ H−1/2

{

− 17

1536
κ1(SγuvS)(SγuvS)
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+

[

43

768
κ1 +

1

192
κ2

]

(SγauS)(SγauS)

−
[

1

192
κ2 +

1

128
κ1

]

(SγabS)(SγabS)

+XaXb 1

r2

[

31

768
κ1 −

1

32
κ2

]

(SγauS)(SγbuS)

+XaXb 1

r2

[

+
1

32
κ2 +

29

384
κ1

]

(SγacS)(SγbcS)

}

(2.1)

where

κ1 = H−5/2(H ′)2, κ2 = H−3/2H ′
1

r
, H(Xm) = 1 +

4πg2α′2

r4
(2.2)

In the right hand side of the third equation of (2.2) we have replaced the closed string

coupling constant by the open string coupling constant. For a perturbative approach we

expand the operator around a point, Xm
0 with (Xm

0 )2 ≡ r2
0, that is far away from the

center branes. Because of the SO(6) rotational symmetry of the brane configuration the

individual coordinate Xm
0 will only appear through r0 which we will fix later. To illustrate

the large r0 expansion consider the function H. Define

r4
0 = Λ4 α′2, q =

4πg2

Λ4
(2.3)

where Λ is a dimensionless parameter that measures the norm of r0 in terms of
√

α′.

Shifting Xm → Xm + Xm
0 one gets

H(X + X0) = 1 + q − 4 q X0 · X
r0

2
+ q

(

−2 r2

r0
2

+
12 (X0 · X)2

r0
4

)

+ · · · (2.4)

It is nice to note that due to the dimensional regularization only a finite number of terms

contribute for a fixed number of external states and a fixed space-time loop order. For

example in the case of four point scattering we should expand up to (and including) X4-

order: higher order terms do not make contributions.4 The expansion parameters are taken

as 1
r0

(or Λ) and q. Since we are dealing with the one-loop divergence, only the linear terms

in q may be kept. It seems that in the leading order of 1
r0

all of the S-quartic terms drop

basically because of the fermionic equation of motion.

2.1 Scalar multiplet scattering

The kinematic structure of the one-loop divergence [11, 4] is

〈VsVsVsVs〉 ∼
1

ǫ

1

4
(su ξ1 · ξ4 ξ2 · ξ3 + tu ξ1 · ξ2 ξ3 · ξ4 + st ξ2 · ξ4 ξ1 · ξ3) (2.5)

4For the purely vector multiplet scattering it is even simpler since a longitudinal coordinate, Xu, and

a transverse coordinate, Xm, do not contract each other: one can simply set Xm = Xm
0 . Incidentally,

this does not make the vector case simpler. The reason is that the external states come with eikX-factor

which contains the longitudinal coordinates. For the q-order four point amplitudes that we consider only

the quadratic terms contribute.

– 5 –
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where ǫ is a infinitesimal parameter. What we want to show, therefore, is

〈VsVsVsVs VG〉 ∼
1

4
(su ξ1 · ξ4 ξ2 · ξ3 + tu ξ1 · ξ2 ξ3 · ξ4 + st ξ2 · ξ4 ξ1 · ξ3) (2.6)

Here and below we have suppressed a common factor Γ(−α′s)Γ(−α′t)
Γ(1−α′s−α′t) . It is a necessary condi-

tion. Making it sufficient will give a relation between ǫ,Λ and ǫy as we will discuss towards

the end of sec 2. We define ǫy below. We break VG into the power series expansion in 1
r0

,

VG = VG,r−4

0

+ VG,r−5

0

+ VG,r−6

0

+ · · · (2.7)

As indicated the leading order vertex operator comes with 1
r4

0

. We will work out the explicit

form below and show that

πVG,r−4

0

=
q

4

(

−∂σXm∂σXm − ∂τXu∂τX
u + il2 (−S∂τS − S∂σS)

)

(2.8)

With this one gets

〈VsVsVsVs VG,r−4

0

〉 =
4πg2

ǫyΛ4

1

4
(su ξ1 · ξ4 ξ2 · ξ3 + tu ξ1 · ξ2 ξ3 · ξ4 + st ξ2 · ξ4 ξ1 · ξ3) (2.9)

Other than the factor in front 4πg2

ǫyΛ4 it is precisely the kinematic factor of the correspond-

ing tree (and the one-loop) diagram. The parameter ǫy is infinitesimal and introduced to

regulate the divergence of the amplitude with the geometry vertex operator inserted. One

sees that by adjusting 1
ǫyΛ4 one can absorb the one-loop divergence. One of the nice things

about the result is that the computation does not produce any finite part: the only power

of ǫy that appears is 1
ǫy

. As a matter of fact in all the computations that we have performed

so far it remains true. The next leading order vertex operator is

πVG,r−5

0

= − i

4
(
√

hhij − εij)∂iX
+H

−5/4
0

H ′
0

r0
∂jX

mXn
0 (SγmnS)

+
i

4
(
√

hhij − εij)∂iX
+H

−7/4
0

H ′
0

r0
∂jX

uXn
0 (SγunS) (2.10)

At this order the amplitude turn out to vanish,

〈VsVsVsVs VG,r−5

0

〉 = 0 (2.11)

In the third leading order the geometry vertex operator is

VG,r−6

0

= − i∂iX
+

2p+
(
√

h hij − εij)

[

XnXn S∂jS + ∂jX
uXn (SγunS))

−∂jX
mXn (SγmnS)

]

− 1

192

√
hhij ∂iX

+∂jX
+

(p+)2
{(SγauS)(SγauS) − (SγabS)(SγabS)} (2.12)

With increasing number of the fields the computation becomes quickly complicated even

for the machine computing. Although we have not entirely completed computation we

have carried out some of the correlators. For example we have checked that

〈XXXX VG,r−6

0

〉 = 0 (2.13)

– 6 –
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There are several other corrrelators that we have checked. Based on the computations so

far we expect that the correlator at this order will vanish, 〈VsVsVsVs VG,r−6

0

〉 = 0. We

mention the reason for the expectation in the conclusion.

2.2 Vector multiplet scattering

A similar pattern is found in the case of the vector scattering: the leading order terms in

VG produces the desired kinematic structure and the higher order terms yield vanishing

results. Recall the kinematic structure of the tree level scattering without VG,

K = −1

4
(st ζ1 · ζ3 ζ2 · ζ4 + su ζ2 · ζ3 ζ1 · ζ4 + tu ζ1 · ζ2 ζ3 · ζ4)

+
1

2
s(ζ1 · k4 ζ3 · k2 ζ2 · ζ4 + ζ2 · k3 ζ4 · k1 ζ1 · ζ3

+ζ1 · k3 ζ4 · k2 ζ2 · ζ3 + ζ2 · k4 ζ3 · k1 ζ1 · ζ4)

+
1

2
t(ζ2 · k1 ζ4 · k3 ζ3 · ζ1 + ζ3 · k4 ζ1 · k2 ζ2 · ζ4

+ζ2 · k4 ζ1 · k3 ζ3 · ζ4 + ζ3 · k1 ζ4 · k2 ζ2 · ζ1)

+
1

2
u(ζ1 · k2 ζ4 · k3 ζ3 · ζ2 + ζ3 · k4 ζ2 · k1 ζ1 · ζ4

+ζ1 · k4 ζ2 · k3 ζ3 · ζ4 + ζ3 · k2 ζ4 · k1 ζ1 · ζ2) (2.14)

One can show that

〈VgVgVgVg VG,r−4

0

〉 =
4πgs

ǫyΛ4
K (2.15)

In sec 3 we illustrate the computations explicitly working out the coefficients of all ζ ·ζ ζ ·ζ-

terms and a few ζ · k ζ · k ζ · ζ-terms. The next order geometry vertex operator yields

vanishing expression as in the scalar case,

〈VgVgVgVg VG,r−5

0

〉 = 0 (2.16)

The results of the two subsections above verify the conjecture at the first two leading

orders. Let’s compare the results with the one loop divergence. The one loop divergence

in each case comes with a diverging factor

∫

ǫ

1

y2
∼ 1

ǫ
(2.17)

This implies a relation between ǫ, ǫy and Λ. Up to an immaterial numerical factor it is

1

ǫyΛ4
=

1

ǫ
(2.18)

We now turn to the actual derivation of the results presented in this section.

– 7 –
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3. One loop divergence cancellation

An M-point amplitude in general is given by5

AM =

∫

dµ

〈

M
∏

i=1

V (ki)

〉

(3.1)

The measure dµ is

dµ = |(x1 − x2)(x1 − xM )(x2 − xM )|
∫

dx3 . . . dxM−1

M−1
∏

1

θ(xr − xr+1) (3.2)

To remove the divergence we proposed [4] to consider

AM =

∫ 1

0
dx

∫

∞

x1

dy

〈

M
∏

i=1

V (ki) VG(y)

〉

(3.3)

where V (ki) denotes an external state and VG the geometry vertex operator. We have

chosen the location of states such that x4 < x3 < x2 < x1 < y with x4 = 0, x3 = x, x2 = 1.

This is a natural choice in light of the view that VG|0 > represents a some kind of asymptotic

state. At the end of each computation we take x1 → ∞. Since the measure gives the factor

x2
1 one can keep only the terms that comes with 1

x2

1

when computing
〈

∏M
i=1 V (ki) VG(y)

〉

.

To regulate the divergence that occurs when y → x1 the y-integral range is adjusted to

∫

∞

x1+ǫy

dy (3.4)

We will focus on the four point amplitudes. As for the three point, one loop, with or

without the geometry vertex operator, vanishes due to the index structures. One of the

expansion parameters is taken to be q,

q =
Q

r4
0

with Q = 4πg2α′2 (3.5)

Note the following to keep the same orders of the expansion parameters

∂X+ = l2p+, H0 = 1 + q, H ′

0 = −4
q

r0
(3.6)

Introducing a dimensionless constant Λ we measure the norm of r0 in terms of the string

constant α′

r4
0 = Λ4 α′2 (3.7)

so that

q =
4πg2

Λ4
(3.8)

5For a review see [11, 12]
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The parameter N that represents the number of branes will appear through the Chan-Paton

procedure. We take

Λ, g (3.9)

as the expansion parameters for our perturbative analysis. The bosonic and the fermionic

propagators are respectively

〈XiXj〉 = −2α′ηij ln |x − x′|

〈Sa1

1 Sa2

1 〉 =
δa1a2

x1 − x2
(3.10)

In the computations below we wick-rotate not only the world-sheet parameter τ but also

σ. The latter is implied by T-duality. The same Wick rotation was used in the previous

work [4]. It is useful to note that

Tr γu1v1γu2v2 = −8(δu1u2
δv1v2

− δu1v2
δu2v1

), (3.11)

The γ’s here are 8 by 8 matrices. One can easily check that

〈Ru1v1Ru2v2〉 = −(δu1u2
δv1v2

− δu1v2
δu2v1

)

(x1 − x2)2
(3.12)

and

〈Ru1v1(x1)R
u2v2(x2)R

u3v3(x3)〉

= − 1

x12x23x13
(δu2u3

δu1v2
δv1v3

− δu2u3
δu1v3

δv1v2
− δu2v3

δu1v2
δv1u3

+δu2v3
δu1u3

δv1v2
− δu3v2

δu1u2
δv1v3

+ δu3v2
δu1v3

δu2v1

+δv2v3
δu1u2

δv1u3
− δv2v3

δu1u3
δu2v1

) (3.13)

The product of four R’s can be similarly computed. The result is rather long so we do

not present it here but refer to [4]. In many intermediate steps of the computations below

momentum conservation is used. For example in some of the correlators the leading order

term comes with 1
x1

. This would lead to a divergent result since only a factor of x2
1 is

present in the integration measure. Often the term gets killed by momentum conservation

if not by its index structure. We keep α′, l(≡
√

2α′) in some places but in others we have

used their explicit values,

α′ =
1

2
, l = 1 (3.14)

3.1 Scalar scattering case

For convenience we record the explicit form of the product of four scalar vertex operators

V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) (3.15)

= X ′m1X ′m2X ′m3X ′m4 + l8Rm1v1kv1

1 Rm2v2kv2

2 Rm3v3kv3

3 Rm4v4kv4

4
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−l2
[

X ′m1X ′m2X ′m3Rm4v4kv4

4 + X ′m1X ′m2X ′m4Rm3v3kv3

4

+X ′m1X ′m3X ′m4Rm2v2kv2

2 + X ′m2X ′m3X ′m4Rm1v1kv1

1

]

+l4
[

X ′m1X ′m2Rm3v3kv3

3 Rm4v4kv4

4 + X ′m3X ′m4Rm1v1kv1

1 Rm2v2kv2

2

+X ′m1X ′m4Rm2v2kv2

2 Rm3v3kv3

3 + X ′m1X ′m3Rm2v2kv2

2 Rm4v4kv4

4

+X ′m2X ′m3Rm1v1kv1

1 Rm4v4kv4

4 + X ′m2X ′m4Rm1v1kv1

1 Rm3v3kv3

3

]

−l6
[

X ′m1Rm2v2kv2

2 Rm3v3kv3

3 Rm4v4kv4

4 + X ′m2Rm1v1kv1

1 Rm3v3kv3

3 Rm4v4kv4

4

+X ′m3Rm1v1kv1

1 Rm2v2kv2

2 Rm4v4kv4

4 + X ′m4Rm1v1kv1

1 Rm2v2kv2

2 Rm3v3kv3

3

]

The form is appropriate before the Wick rotation which will be taken into account in

each individual computation below. With it we multiply the geometry vertex operator at

each order, such as VG,r−4

0

, VG,r−5

0

etc, and compute the resulting correlator. Each level

geometry vertex operator has several terms: we compute them one by one and put the

results together at the end. A pattern emerges on how the desired kinematic structure

arises: only a first few leading terms are responsible for the structure with the higher order

terms yielding vanishing results.

3.1.1 Leading order computation

The leading vertex operator is given by

πVG,r−4

0

≃ q

4

√
h hij (∂iX

u∂jX
vηuv − ∂iX

m∂jX
nηmn) +

il2 q

4
(
√

h h0j + ε0j)(S∂jS)

≃ q

4

(

−∂σXm∂σXm − ∂τX
u∂τX

u + il2 (−S∂τS − S∂σS)
)

(3.16)

When one goes from the first to second one drops certain bosonic terms because of σ = 0.

With the first correlator

〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂iX
m∂jX

nηmn〉,

certain terms drop either because of the dimensional regularization or/and they contain an

odd number of Xm fields:

〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂iX
m(y)∂jX

n(y)ηmn〉
= 〈X ′m1X ′m2X ′m3X ′m4 ∂iX

m∂jX
nηmn〉

−l4〈
[

X ′m1X ′m2Rm3v3kv3

3 Rm4v4kv4

4 + X ′m3X ′m4Rm1v1kv1

1 Rm2v2kv2

2

+X ′m1X ′m4Rm2v2kv2

2 Rm3v3kv3

3 + X ′m1X ′m3Rm2v2kv2

2 Rm4v4kv4

4 (3.17)

+X ′m2X ′m3Rm1v1kv1

1 Rm4v4kv4

4 + X ′m2X ′m4Rm1v1kv1

1 Rm3v3kv3

3

]

∂iX
m∂jX

nηmn〉

The signs of l4-terms have been flipped by Wick rotation in the σ direction, which is im-

plied by T-duality. Combining the two contributions one gets after collecting terms of the
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same types
∫ 1

0
dx

∫

∞

x1+ǫy

dy 〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂iX
m(y)∂jX

n(y)ηmn〉

=

∫ 1

0
dx

[

−16

ǫ4

(

ξ1 · ξ4 ξ2 · ξ3
1

(−1 + x)2
+ ξ1 · ξ3 ξ2 · ξ4 +

ξ1 · ξ2 ξ3 · ξ4

x2

)

α′3

−16

ǫ4

(

t ξ1 · ξ4 ξ2 · ξ3

(−1 + x)2
+ u ξ1 · ξ3 ξ2 · ξ4 +

s ξ1 · ξ2 ξ3 · ξ4

x2

)

α′4
]

(3.18)

After performing the x-integration it reproduces the tree result of the four point amplitude

without the geometry vertex operator,

1

ǫy

1

4
(su ξ1 · ξ4 ξ2 · ξ3 + tu ξ1 · ξ2 ξ3 · ξ4 + st ξ2 · ξ4 ξ1 · ξ3) (3.19)

The next correlator to consider is

〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂iX
u∂jX

vηuv〉

Here again certain terms drop trivially either because of the dimensional regularization

or/and because they contain an odd number of Xm fields:

〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂iX
u(y)∂jX

v(y)ηuv〉
= 〈X ′m1X ′m2X ′m3X ′m4 ∂iX

u∂jX
vηuv〉

+l8〈Rm1v1kv1

1 Rm2v2kv2

2 Rm3v3kv3

3 Rm4v4kv4

4 ∂iX
u∂jX

vηuv〉
−l4〈

[

X ′m1X ′m2Rm3v3kv3

3 Rm4v4kv4

4 + X ′m3X ′m4Rm1v1kv1

1 Rm2v2kv2

2

+X ′m1X ′m4Rm2v2kv2

2 Rm3v3kv3

3 + X ′m1X ′m3Rm2v2kv2

2 Rm4v4kv4

4 (3.20)

+X ′m2X ′m3Rm1v1kv1

1 Rm4v4kv4

4 + X ′m2X ′m4Rm1v1kv1

1 Rm3v3kv3

3

]

∂iX
u∂jX

vηuv〉

After some algebra one can show that

〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂iX
u(y)∂jX

v(y)ηuv〉 ∼ 1

x3
1

(3.21)

It vanishes as x1 → ∞ since it still goes ∼ 1
x1

even after taking the measure into account.

As a matter of fact many terms in the higher-order VG seem to vanish for the same rea-

son. The last correlator which is with S(y)∂S(y) vanishes due to the fermionic equation of

motion. This completes the proof that at the leading order in r0-expansion the geometry

vertex operator does produce the correct structure to cancel the one-loop divergence.

3.1.2 Next leading order computation

In the next leading order the geometry vertex operator is6

πVG,r−5

0

= − i

4
(
√

hhij − εij)∂iX
+H

−5/4
0

H ′
0

r0
∂jX

mXn
0 (SγmnS)

+
i

4
(
√

hhij − εij)∂iX
+H

−7/4
0

H ′
0

r0
∂jX

uXn
0 (SγunS) (3.22)

6There are terms that are of the form ∂X∂XX that come from the first line of (2.1) after expanding

H±1/2. They trivially vanish due to the dimensional regularization and/or their index structures.
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As before several terms drop trivially

〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂jX
mSγmnS〉Xn

0

= 〈(−l2
[

X ′m1X ′m2X ′m3Rm4v4kv4

4 + X ′m1X ′m2X ′m4Rm3v3kv3

4

+X ′m1X ′m3X ′m4Rm2v2kv2

2 + X ′m2X ′m3X ′m4Rm1v1kv1

1

]

−l6
[

X ′m1Rm2v2kv2

2 Rm3v3kv3

3 Rm4v4kv4

4 + X ′m2Rm1v1kv1

1 Rm3v3kv3

3 Rm4v4kv4

4

+X ′m3Rm1v1kv1

1 Rm2v2kv2

2 Rm4v4kv4

4 + X ′m4Rm1v1kv1

1 Rm2v2kv2

2 Rm3v3kv3

3

]

)

∂jX
mSγmnS〉Xn

0

= 〈(−l6
[

X ′m1Rm2v2kv2

2 Rm3v3kv3

3 Rm4v4kv4

4 + X ′m2Rm1v1kv1

1 Rm3v3kv3

3 Rm4v4kv4

4

+X ′m3Rm1v1kv1

1 Rm2v2kv2

2 Rm4v4kv4

4 + X ′m4Rm1v1kv1

1 Rm2v2kv2

2 Rm3v3kv3

3

]

)

∂jX
mSγmnS〉Xn

0 (3.23)

One can see that the l2-terms vanish due to the index structure as follows. For example

consider < Rm1v1 SγmnS >∼ (δm1mδv1n − δm1nδv1m) = 0. (Recall that the m or n indices

run in the transverse directions whereas the u or v in the longitudinal space.) The l6-terms

also vanish for the same reason. Therefore at this order one gets

〈VsVsVsVs VG,r−5

0

)〉 = 0 (3.24)

3.2 Vector scattering case

The explicit form of the product of four vector vertex operators is

V u1

g (x1)V
u2

g (x2)V
u3

g (x3)V
u4

g (x4)

= Ẋu1Ẋu2Ẋu3Ẋu4 + l8Ru1v1kv1

1 Ru2v2kv2

2 Ru3v3kv3

3 Ru4v4kv4

4

−l2
[

Ẋu1Ẋu2Ẋu3Ru4v4kv4

4 + Ẋu1Ẋu2Ẋu4Ru3v3kv3

4

+Ẋu1Ẋu3Ẋu4Ru2v2kv2

2 + Ẋu2Ẋu3Ẋu4Ru1v1kv1

1

]

+l4
[

Ẋu1Ẋu2Ru3v3kv3

3 Ru4v4kv4

4 + Ẋu3Ẋu4Ru1v1kv1

1 Ru2v2kv2

2

+Ẋu1Ẋu4Ru2v2kv2

2 Ru3v3kv3

3 + Ẋu1Ẋu3Ru2v2kv2

2 Ru4v4kv4

4

+Ẋu2Ẋu3Ru1v1kv1

1 Ru4v4kv4

4 + Ẋu2Ẋu4Ru1v1kv1

1 Ru3v3kv3

3

]

−l6
[

Ẋu1Ru2v2kv2

2 Ru3v3kv3

3 Ru4v4kv4

4 + Ẋu2Ru1v1kv1

1 Ru3v3kv3

3 Ru4v4kv4

4

+Ẋu3Ru1v1kv1

1 Ru2v2kv2

2 Ru4v4kv4

4 + Ẋu4Ru1v1kv1

1 Ru2v2kv2

2 Ru3v3kv3

3

]

(3.25)

which is before the Wick rotation.

3.2.1 Leading order computation

Since the large r0-expansion is in terms of the transverse coordinates Xm and the transverse

and the longitudinal coordinates do not contract each other one does not have to perform

the expansion when considering purely vector state scattering.7 To cancel the divergence

7This is true for the pure gauge boson scattering. Once one puts the gaugino state it will not be so in

general since it contains X ′ as well as Ẋ.
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of the four vector scattering the relevant terms of the vertex operator VG are

πVG ⇒ −1

2

√
h hij

(

∂iX
u∂jX

vηuv(H
−1/2
0 − 1)

)

+
1

2p+

{

− 2i(
√

h hij − εij)∂iX
+(H

−1/4
0 − 1)(S∂jS)

+
i

4
(
√

hhij − εij)∂iX
+H

−7/4
0

H ′
0

r0
∂jX

uXm
0 (SγumS)

}

+
1

4(p+)2

√
hhij∂iX

+∂jX
+ H

−1/2
0

{

− 17

1536
κ10(SγuvS)(SγuvS)

+

[

43

768
κ10 +

1

192
κ20

]

(SγauS)(SγauS)

−
[

1

192
κ20 +

1

128
κ10

]

(SγabS)(SγabS)

+Xa
0Xb

0

1

r2
0

[

31

768
κ10 −

1

32
κ20

]

(SγauS)(SγbuS)

+Xa
0Xb

0

1

r2
0

[

+
1

32
κ20 +

29

384
κ10

]

(SγacS)(SγbcS)

}

(3.26)

A few of the S-quadratic terms have been dropped because it does not make any contri-

bution in the dimensional regularization. The leading order operator is

πVG,r−4

0

⇒ q

4

(

−∂τXu∂τX
u + il2 (−S∂τS − S∂σS)

)

(3.27)

As for the correlators with (−S∂τS − S∂σS) it vanishes because of the fermionic field

equation. Some of the terms are trivially zero. The 〈RRRR∂X∂X〉 goes as 1/x4
1 so it lead

to a vanishing result, so one can compute

〈
(

Ẋu1Ẋu2Ẋu3Ẋu4

+l4
[

Ẋu1Ẋu2Ru3v3kv3

3 Ru4v4kv4

4 + Ẋu3Ẋu4Ru1v1kv1

1 Ru2v2kv2

2

+Ẋu1Ẋu4Ru2v2kv2

2 Ru3v3kv3

3 + Ẋu1Ẋu3Ru2v2kv2

2 Ru4v4kv4

4

+Ẋu2Ẋu3Ru1v1kv1

1 Ru4v4kv4

4 + Ẋu2Ẋu4Ru1v1kv1

1 Ru3v3kv3

3

]

−l6
[

Ẋu1Ru2v2kv2

2 Ru3v3kv3

3 Ru4v4kv4

4 + Ẋu2Ru1v1kv1

1 Ru3v3kv3

3 Ru4v4kv4

4

+Ẋu3Ru1v1kv1

1 Ru2v2kv2

2 Ru4v4kv4

4 + Ẋu4Ru1v1kv1

1 Ru2v2kv2

2 Ru3v3kv3

3

] )

∂iX
u∂jX

vηuv〉 (3.28)

The task is to reproduce the kinematic structure given in (2.14). We take a few examples

to illustrate how things work. As for the coefficient of ζ1 · ζ2 ζ3 · ζ4 only XXXX∂X∂X

and XXRR∂X∂X contribute and one gets

ζ1 · ζ2 ζ3 · ζ4

x2

(

−16

ǫ4
α′3 − 4

ǫ4
α′2
)

(3.29)
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Note that we sometimes use α′ = 1/2 here and there so the powers of α′ is not systematic.

After the x-integration one gets the expected result. Let’s consider an example of the form

ζ · k ζ · k ζ · ζ The coefficient of ζ1 · ζ2 comes from XXXX∂X∂X and XXRR∂X∂X:

32

(

k2 · ζ3 k2 · ζ4

−1 + x
+

k2 · ζ3 k3 · ζ4

(−1 + x) x
+

k2 · ζ4 k4 · ζ3

x
+

k3 · ζ4 k4 · ζ3

x2

)

α′4

ǫ4

−8 ζ3 · k4 ζ4 · k3 α′2

x2 ǫ4
(3.30)

which leads, after the x-integration, to the correct result of

u ζ3 · k2 ζ4 · k1 + t ζ3 · k1 ζ4 · k2 (3.31)

Even for the same ζ · k ζ · k ζ · ζ-type terms the conspiracy between the intermediate terms

can be different as can be seen in the computation of ζ2 · ζ4-term. Here all three different

type of terms contribute.

〈XXXX∂X∂X〉 ⇒ 32

ǫ4

(− ζ1 · k2 ζ3 · k2

−1 + x
− x ζ1 · k3 ζ3 · k2

−1 + x
− ζ1 · k2 ζ3 · k4

−1 + x

+
ζ1 · k2 ζ3 · k4

(−1 + x) x
− ζ1 · k3 ζ3 · k4

)

α′4

−〈XXRR∂X∂X〉 ⇒ −α′3

ǫ4

(

8u ζ1 · k2 ζ3 · k2

−1 + x
+

8ux ζ1 · k3 ζ3 · k2

−1 + x
+

8u ζ1 · k2 ζ3 · k4

−1 + x

−8u ζ1 · k2 ζ3 · k4

(−1 + x) x
− 8u ζ1 · k3 ζ3 · k4

−1 + x
+

8ux ζ1 · k3 ζ3 · k4

−1 + x

)

〈XRRR∂X∂X〉 ⇒ 1

ǫ4

(−i s ζ1 · k2 ζ3 · k2

(−1 + x) x
− i s ζ1 · k3 ζ3 · k2

−1 + x
+

i t ζ1 · k2 ζ3 · k4

(−1 + x) x

+
i t ζ1 · k3 ζ3 · k4

−1 + x

)

(3.32)

One can easily show by doing the x-integration that

〈XXXX∂X∂X〉 − 〈XXRR∂X∂X〉 − i〈XRRR∂X∂X〉
⇒ s ζ1 · k4 ζ3 · k2 + t ζ1 · k2 ζ3 · k4 (3.33)

where the Wick rot has been taken into account. The result is as expected. Each correlator

above produces many unwanted terms of different structure, i.e., more “mixed” types of

terms. They are combined to cancel among themselves. The details go as follows.

〈XXXX∂X∂X〉 − 〈XXRR∂X∂X〉 − i〈XRRR∂X∂X〉

⇒ 1

ǫ4

[

2

(−1 + x)2 x2
(ζ1 · k2 + x ζ1 · k3) (−ζ2 · k3 − ζ2 · k4 + x ζ2 · k4)

× (x ζ3 · k2 − ζ3 · k4 + x ζ3 · k4) (x ζ4 · k2 + ζ4 · k3)
]

− 1

ǫ4

[

2

(−1 + x)2 x2
(ζ1 · k2 + x ζ1 · k3) (−ζ2 · k3 − ζ2 · k4 + x ζ2 · k4)
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× (x ζ3 · k2 − ζ3 · k4 + x ζ3 · k4) (x ζ4 · k2 + ζ4 · k3)

+
2 (ζ1 · k2 + x ζ1 · k3) (ζ2 · k3 ζ3 · k4 ζ4 · k2 − ζ2 · k4 ζ3 · k2 ζ4 · k3)

(−1 + x) x

]

− i

ǫ4

[

(2i) (ζ1 · k2 + x ζ1 · k3) (ζ2 · k3 ζ3 · k4 ζ4 · k2 − ζ2 · k4 ζ3 · k2 ζ4 · k3)

(−1 + x) x

]

= 0 (3.34)

3.2.2 Next leading order computation

For the vector scattering first consider 〈VgVgVgVg ∂jX
m(SγmnS)〉Xn

0 . By careful inspection

of the indices one can show that it vanishes,

〈VgVgVgVg ∂jX
m(SγmnS)〉Xn

0 = 0 (3.35)

The second term in the geometry vertex operator gives

〈
(

l8Ru1v1kv1

1 Ru2v2kv2

2 Ru3v3kv3

3 Ru4v4kv4

4

+l4
[

Ẋu1Ẋu2Ru3v3kv3

3 Ru4v4kv4

4 + Ẋu3Ẋu4Ru1v1kv1

1 Ru2v2kv2

2

+Ẋu1Ẋu4Ru2v2kv2

2 Ru3v3kv3

3 + Ẋu1Ẋu3Ru2v2kv2

2 Ru4v4kv4

4

+Ẋu2Ẋu3Ru1v1kv1

1 Ru4v4kv4

4 + Ẋu2Ẋu4Ru1v1kv1

1 Ru3v3kv3

3

] )

∂jX
u (SγunS)〉Xn

0 (3.36)

By inspecting the index structures again it is not difficult to tell that the above correlators

vanish: basically because all the indices are (u, v) except one which is n. Therefore at this

order

〈VgVgVgVg VG,r−5

0

)〉 = 0 (3.37)

4. Discussion and future directions

In this work we have shown8 at the first two leading orders in the large-r0 expansion that

the counter vertex operator (2.1) does produce the required structure (without any extra

unwanted terms) to absorb the one-loop divergence. It is, therefore, verification of the

conjecture put forward in [4] at the specified orders. It is encouraging that it is possible to

absorb the divergence within the pure open string frame-work. For one thing it is not very

clear how to produce the open string kinematic factor using some kind of explicit closed

string degrees of freedom. Also even within the open string frame-work it is a priori never

guaranteed that the computation will yield the right and only the right types of terms.

As the order increases, more9 terms in the geometry vertex operator become relevant.

With each term the number of the intermediate terms in the computations of the correlator

increases very quickly, i.e., factorially. We have examined several r−6
0 -order terms. We

8For a D0 brane or D1 brane it is necessary to consider the recoil effect that was discussed for example

in [13].
9However, only the finite number of terms contribute as mentioned previously.
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illustrate the computations with the scalar scattering. The counter vertex operator at

r−6
0 -order is given by

πVG,r−6

0

≃ =
q

r2
0

(

−1

2

√
h hij (∂iX

u∂jX
uXnXn − ∂iX

m∂jX
m XnXn)

− i∂iX
+

2p+
(
√

h hij − εij) [XnXn S∂jS + ∂jX
uXn (SγunS))

−∂jX
mXn (SγmnS)]

− 1

192

√
hhij ∂iX

+∂jX
+

(p+)2
{(SγauS)(SγauS) − (SγabS)(SγabS)}

)

(4.1)

One of the correlators that we have considered is

q

r2
0

〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂iX
m∂jX

nηmnX lX l〉

=
q

r2
0

〈X ′m1X ′m2X ′m3X ′m4 ∂iX
m∂jX

mXnXn〉 (4.2)

The other terms drop due to the dimensional regularization. It turns out that the correlator

vanishes

〈X ′m1X ′m2X ′m3X ′m4 ∂iX
m∂jX

mXnXn〉 = 0 (4.3)

Therefore

q

r2
0

〈V m1

s (x1)V
m2

s (x2)V
m3

s (x3)V
m4

s (x4) ∂iX
m∂jX

nηmnX lX l〉 = 0 (4.4)

As a matter of fact it is not too difficult to check that none of the r−6
0 -terms yields a finite

result,

〈X ′m1X ′m2X ′m3X ′m4 VG,r−6

0

〉 = 0 (4.5)

Another correlator that we have checked is 〈XXRR ∂Xu∂XuXnXn〉. It also vanishes,

〈XXRR ∂Xu∂XuXnXn〉 = 0 (4.6)

In the higher order computations it is often the high powers of 1
x1

that are responsible for

the null result since higher order terms tend to come with higher powers of 1
x1

. We ex-

pect with reasonable confidence that all the higher order terms will yield vanishing results

because of this reason together with the index structures.

In the introduction we have shown that the flat space is unable to cancel the divergence

due to a mismatch of a sign, which is correctly produced by the action in the curved space.

Together with the results obtained in sec 3 we believe that it strongly supports the notion

of the engineering of the D-brane geometry by open string loop effects. However, the fact

that all the higher order correlators checked so far vanish makes role-less all the terms in

VG that are more composite than those in quadratic order in fields. It will be nice to see

an example where that they do contribute. It is likely that the non-contribution of the
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higher order terms is a peculiar feature of the one-loop order. At higher loop orders we

expect that the presence and inter-correlation of the cubic and more composite terms will

be indispensable for the cancelation of the divergence. It is one of the near-future directions

that we will pursue [14].10 Another direction that we may pursue is the computation of

the open string analogue of the anomalous dimension of N=4 SYM. It will be interesting

to study whether the full open string computation can lead to a resolution of the three

loop discrepancy.

Once we verify the conjecture with more examples of higher orders in r0 or/and g one

of the things that it establishes is the picture that the open string, starting out in a flat

space, completes the theory toward the curved geometry. It will also imply the relevance

of the open string even in the final form of AdS/CFT [16].11 The resulting non-linear

sigma model then will be analogous to the 1PI effective action in a quantum field theory.

The connection to AdS geometry and to AdS/CFT can be seen through the effective field

theory action, namely the DBI type action, along the line of the following logic [18, 4].

First apply an S-duality on the DBI action making the coupling constant flip, g → g′ = 1
g .

Then taking a g → 0 limit brings two things. First, the D-brane geometry becomes an

AdS space. Secondly, the limit allows one to write down the solution of the equations of

motion of the DBI action in a particular form [20, 21], which, in turn, can be interpreted

as a closed string action.

Finally a few comments on the relation with the Fischler-Susskind mechanism [6, 7]

are in order. The very idea of the role of the geometry in the divergence cancelation is the

same, in spirit, as that of the Fischler-Susskind mechanism. There are a few differences as

well. First of all, it is the set-up of the computation, which in turn makes the interpretation

of the geometry very different. In [6, 7] ( a related discussion can be found in [19]) the

geometry exists from the beginning as a fundamental object whereas in our construction

we are proposing that it should be a secondary by-product of the flat-space loop effects.

Secondly but perhaps more importantly it is the relevance of the presence of a D-brane and

the transverse space. The analysis of [6, 7, 19] was carried out for a closed string/space-

time filling brane case. Therefore there is no room for the transverse geometry. This is to

be contrasted with the present case where have a Dp-brane with p < 9. Put in another

way, we do not expect the D9 brane to have non-trivial geometry even in the higher order

perturbation. Lastly, we note that the geometry that results from the analysis of [6, 7] is

AdS/dS while in our case it is (or is expected to be) the full Dp-brane geometry before the

S-duality that is mentioned in the previous paragraph.
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10For that purpose it may be useful to attempt the corresponding computation in the field theory context

in an extension of the analysis that is initiated in [15].
11A related discussion can be found e.g., in [17].
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A. Derivation of geometry vertex operator

A.1 Derivation of the action

The GS action for a generic curved background was obtained by several different groups [8 –

10]. We use the action obtained by Sahakian since his result includes fermionic quartic

terms which is the highest order, in the light-cone gauge, that can be present for a certain

class of configurations. We narrow down to the terms that is relevant for the D3-brane

geometry. The action that is zeroth order in the fermionic coordinates is given, in our

conventions, by

S(0) = −
∫

d2σ

[

1

2

√
h hijV Ã

i VÃj − 2
√

h hijV +
i V −

j

]

(A.1)

where

V a
i ≡ ∂iX

mea
m, V ±

i ≡ ∂iX
me±m, (A.2)

with

V +
i =

1

2
(V 0

i + V 3
i ) (A.3)

Putting the quadratic fermionic terms and the quartic fermionic terms together one gets

S(2) + S(4)

=
1

π

∫

d2σ − 2i
√

h hijV +
i (θ1∂jθ

1 + θ2∂jθ
2)

− i

2

√
h hij∂jX

M̃wM̃C̃D̃V +
i (θ1σC̃D̃θ1 + θ2σC̃D̃θ2)

−2i εijV +
i (θ2∂jθ

2 − θ1∂jθ
1)

− i

2
εij∂jX

M̃wM̃C̃D̃V +
i (θ2σC̃D̃θ2 − θ1σC̃D̃θ1)

+
i

2
εijV +

i V D̃
j G−+C̃

ÃB̃(θ1σÃB̃θ2 + θ2σÃB̃θ1) ηC̃D̃

+
√
−h hijV +

i V +
j

{

23

576
(θ1θ2)2 G−+ÃB̃C̃G−+

ÃB̃C̃

− 1

4608
(θtσÃB̃θt) (θsσÃB̃θs)G−+C̃D̃ẼG−+

C̃D̃Ẽ

+0

− 1

768
(θtσÃB̃θt)(θsσC̃D̃θs)

[

G−+Ẽ
ÃB̃G−+

ẼC̃D̃ − 1

24
GÃB̃ẼF̃ G̃GẼF̃ G̃

C̃D̃

]

+
1

128
(θtσÃC̃θt)(θsσB̃

C̃θs)

[

G−+
ÃD̃ẼG−+D̃Ẽ

B̃ − 1

72
GÃD̃ẼF̃ G̃GD̃ẼF̃ G̃

B̃

]

− 1

48
DC̃G−+C̃

ÃB̃ θ1θ2 (θtσÃB̃θt)

+
5

4
(θ1θ2)2 R−+−+ +

1

96
(θtσÃB̃θt)(θsσÃB̃θs)R−+−+
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+
1

48
(θtσÃC̃θt) (θsσB̃

C̃θs)

[

R−+
ÃB̃ − 1

2
RÃC̃B̃D̃ηC̃D̃

]

+
1

192
(θtσÃB̃θt) (θsσC̃D̃θs)

[

RÃC̃B̃D̃ +
1

2
RÃB̃C̃D̃

]}

(A.4)

Due to the light-cone gauge constraint each fermionic coordinate θt has only eight non-zero

components. Replacing the 16 by 16 gamma matrices σÃ by 8 by 8 matrices γÃ one gets,

after

X+ =
p0 + p3

2
, θθ → 1

2p+
SS, (A.5)

S(2) + S(4)

=
1

π

∫

d2σ
1

2p+

{

− 2i
√

h hijV +
i (St∂jS

t)

− i

2

√
h hij∂jX

M̃wM̃C̃D̃V +
i (StσC̃D̃St)

−2i εijV +
i (S2∂jS

2 − S1∂jS
1)

− i

2
εij∂jX

M̃wM̃C̃D̃V +
i (S2σC̃D̃S2 − S1σC̃D̃S1)

+
i

2
εijV +

i V D̃
j G−+C̃

ÃB̃(S2σÃB̃S1 + S1σÃB̃S2) ηC̃D̃

}

+
1

4(p+)2

√
−h hijV +

i V +
j

{

23

576
(S1S2)2 G−+ÃB̃C̃G−+

ÃB̃C̃

− 1

4608
(StσÃB̃St) (SsσÃB̃Ss)G−+C̃D̃ẼG−+

C̃D̃Ẽ

+0

− 1

768
(StσÃB̃St)(SsσC̃D̃Ss)

[

G−+Ẽ
ÃB̃G−+

ẼC̃D̃− 1

24
GÃB̃ẼF̃ G̃GẼF̃ G̃

C̃D̃

]

+
1

128
(StσÃC̃St)(SsσB̃

C̃Ss)

[

G−+
ÃD̃ẼG−+D̃Ẽ

B̃− 1

72
GÃD̃ẼF̃ G̃GD̃ẼF̃ G̃

B̃

]

− 1

48
DC̃G−+C̃

ÃB̃ S1S2 (StσÃB̃St)

+
5

4
(S1S2)2 R−+−+ +

1

96
(StσÃB̃St)(SsσÃB̃Ss)R−+−+

+
1

48
(StσÃC̃St) (SsσB̃

C̃Ss)

[

R−+
ÃB̃ − 1

2
RÃC̃B̃D̃ηC̃D̃

]

+
1

192
(StσÃB̃St) (SsσC̃D̃Ss)

[

RÃC̃B̃D̃ +
1

2
RÃB̃C̃D̃

]}

(A.6)

The IIB super-gravity solution for the D3 brane configuration is given by

ds2 = H−1/2(dxµ)2 + H1/2(dxm)2

G0̄1̄2̄3̄c = −Xc

r
H−5/4H ′

Gabcde =
H−5/4H ′

r
εabcdefXf (A.7)
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The bar indicates that the indices are flat. Substituting the explicit forms of the connection,

the five form and the Riemann tensor into the total action one gets

S(0) + S(2) + S(4)

=
1

π

∫

d2σ −
[

1

2

√
h hijV Ã

i VÃj − 2
√

h hijV +
i V −

j

]

+
1

2p+

{

− 2i
√

h hijV +
i (St∂jS

t) − 2iεijV +
i (S2∂jS

2 − S1∂jS
1)

+
i

4

√
hhijV +

i H−3/2 H ′

r
∂jX

uXmStγumSt

− i

4

√
hhijV +

i H−1 H ′

r
∂jX

mXnStγmnSt

+
i

4
V +

i εijH−3/2 H ′

r
∂jX

uXm(S2γumS2 − S1γumS1)

− i

4
V +

i εijH−1 H ′

r
∂jX

mXn(S2γmnS2 − S1γmnS1)

+iεijV +
i H−5/4 H ′

r
Xb(V b

j S2γ12S1 + V 1
j S2γ2bS1 − V 2

j S2γ1bS1)

}

+
1

4(p+)2

√
hhijV +

i V +
j

{

23

24
(S1S2)2H−5/2(H ′)2

− 1

192
(StγÃB̃St)(St′γÃB̃St′)H−5/2(H ′)2

− 1

768
H−5/2(H ′)2

[

16(Stγ12St)(St′γ12St′)+16(StγauSt)(St′γcuSt′)
XaXc

r2

− 1

24
(StγabSt)(St′γcdSt′)

XhXh′

r2
εabefghεcdefgh′

]

+
1

16
H−5/2(H ′)2

[

(StγaC̃St)(St′γb
C̃St′)

XaXb

r2
+ (StγauSt)(St′γauSt′)

− 1

576
(StγaC̃St)(St′γb

C̃St′)
XhXh′

r2
εadefghεbdefgh′

]

+
1

24
H−5/2(H ′)2 S1S2(Stγ12St) +

5

16
H−5/2(H ′)2 S1S2

+
1

384
H−5/2(H ′)2 (StγÃB̃St)(St′γÃB̃St′)

+
3

1536
H−5/2(H ′)2(StγαC̃St)(St′γαC̃St′)

− 1

96
(4g2X

aXb + 4g3δab)(S
tγaC̃St)(St′γb

C̃St′)

− 1

384
(4g2r

2 + 24g3) (StγαC̃St)(St′γαC̃St′)

− 1

96
(4h1X

aXb + h1r
2δab + 5h2δab)(S

tγaC̃St)(St′γb
C̃St′)

+
1

96
g1(S

tγαβSt)(St′γαβSt′)+
1

48
(g2X

aXb+g3δab)(S
tγαaSt)(St′γα

bSt′)

+
1

96

[

2h1X
aXb(StγaeSt)(St′γbeS

t′) + h2(S
tγabSt)(St′γabS

t′)
]

}

(A.8)
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When we compute the amplitude below we will use the dimensional regularization. Con-

sidering that the scattering states contain only the S1 coordinate but not S2 we can drop

the terms in (A.8) that have an S2 factor. Defining

S ≡ S1 (A.9)

and setting V −

j = 0, one gets after some algebra

S(0) + S(2) + S(4)

=
1

π

∫

d2σ −1

2

√
h hij

(

∂iX
u∂jX

vηuvH
−1/2 + ∂iX

m∂jX
nηmnH1/2

)

+
1

2p+

{

− 2i(
√

h hij − εij)∂iX
+H−1/4(S∂jS)

+
i

4
(
√

hhij − εij)∂iX
+H−7/4 H ′

r
∂jX

uXm (SγumS)

− i

4
(
√

hhij − εij)∂iX
+H−5/4 H ′

r
∂jX

mXn (SγmnS)

}

+
1

4(p+)2

√
hhij∂iX

+∂jX
+ H−1/2

{

− 17

1536
κ1(SγuvS)(SγuvS)

+

[

43

768
κ1 +

1

192
κ2

]

(SγauS)(SγauS)

−
[

1

192
κ2 +

1

128
κ1

]

(SγabS)(SγabS)

+XaXb 1

r2

[

31

768
κ1 −

1

32
κ2

]

(SγauS)(SγbuS)

+XaXb 1

r2

[

+
1

32
κ2 +

29

384
κ1

]

(SγacS)(SγbcS)

}

(A.10)

where

κ1 = H−5/2(H ′)2, κ2 = H−3/2H ′
1

r
(A.11)
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